loading...
سایت تخصصی مکانیک لامرد
بچه های مکانیک بازدید : 606 جمعه 27 بهمن 1391 نظرات (0)

موتور وانكل

 موتور دورانی یک  موتور احتراق داخلی است درست مثل موتور اتومبیل ولی کاملا متفاوت با موتور های مرسوم پیستونی کار می کند.در یک موتور پیستونی حجم مشخصی از فضا (سیلندر) متناوبا چهار کار متفاوت را انجام می دهد.مکش ،تراکم ،احتراق ،و خروج دود.موتور دورانی همین کار را انجام می دهد اما هر کدام در جای مخصوص خوذ انجام می شود و این شبیه این است که برای هر کدام از چهار مرحله یک سیلندر جداگانه داشته باشیم و پیستون به طور پیوسته از یکی به بعدی حرکت کند.

موتور دورانی که مخترع آن دکتر فلیکس وانکل بود، گاهی موتور وانکل یا موتور دورانی وانکل نامیده می شود.در این مقاله می آموزیم که موتور دورانی چگونه کار می کند.

مانند یک موتور پیستونی،موتور دورانی از فشار تولید شده هنگام احتراق مخلوط سوخت و هوا استفاده می کند.در موتور پیستونی،این فشار در سیلندر جمع می شود و پیستون را به جلو و عقب می راند.میل لنگ حرکت رفت و برگشتی پیستون ها را به حرکت دورانی تبدیل می کند.

در یک موتور دورانی،فشار حاصل از احتراق،در یک اتاقک ایجاد می شود که این اتقک قسمتی از فضای موتور است که به وسیله ی وجه روتور مثلثی شکل پدید می آید و موتور دورانی از این اتاقک به جای پیستون استفاده می کند .

بقیه در ادامه مطلب

بچه های مکانیک بازدید : 606 جمعه 27 بهمن 1391 نظرات (0)

توربوشارژ

وظیفه توربو شارژ دمیدن هوا با فشار به داخل سیلندر می باشد توربوشارژ با این کار در خروج دود

  کمک کرده در ضمن توربوشارژ با این کار هوای  بیشتری به  داخل سیلندر  تزریق می کند این کار

توربوشارژ باعث بهتر پر کردن سیلندر خواهد شد و راندمان موتور افزایش می یابد

توربوشارژ

 تامین هوای بیشتر در واقع مهیا  ساختن اکسیژن  بیشتر برای  انجام احتراق بوده و این امر سبب

احتراق بهتر سوخت در محفظه احتراق و در نهایت قدرت بیشتر موتور خواهد بود

در موتورهای دیزل دو زمانه از یک دمنده به همین منظور استفاده می شود که قبلا شرح داده شد

فشار هوای ارسالی توسط دمنده تنها اندکی از فشار جو  (فشار اتمسفر) بیشتر است و بنابراین

اثر توربو شارژ را ندارد

توربو شارژ نیروی خود را از دودهای خروجی موتور می گیرد.

بقیه در ادامه مطلب

بچه های مکانیک بازدید : 602 جمعه 27 بهمن 1391 نظرات (0)

منیفولد و سوپاپ 2

انواع مختلف VVT 

1- VVT با سیستم تغییر بادامک

سوپاپ

 

سیستم 3 مرحله ای VTEC هوندا 

هوندا آخرین مدل VTEC  ، 3  مرحله ای را در موتور sohc Civic  در ژاپن بکار برد.این مکانیزم 3 بادامک  

با تایمینگ و پروفیل بلند کردن سوپاپ متفاوت دارد.  

توجه داشته باشید که ابعادشان نیز متفاوت میباشد. بادامک میانی (تایمینگ دور بالا و حداکثر بلند شدن سوپاپ )

در دیاگرام بالا نشان داده شده است که بزرگترین بادامک نیزمیباشد. بادامک سمت راست آن ( تایمینگ دورآرام و 

متوسط بلند شدن سوپاپ ) که سایز آن متوسط می باشد. بادامک سمت چپ  ( تایمینگ دور آرام و حداقل  بلند 

 شدن سوپاپ ) که کوچکترین بادامک نیز می باشد. 

مکانیزم عملکرد آن مطابق شرح ذیل می باشد: 

مرحله 1 ( دور آرام ) : 3 قطعه اسبک بطور آزادانه حرکت می کنند.  بنابراین اسبک سمت چپ سوپاپ ورودی  

سمت چپ را به میزان کمی بلند میکند. اسبک سمت راست نیز سوپاپ سمت راست را به میزان متوسط بلند می

کند.  تایمینگ هر دو بادامک در مقایسه با بادامک میانی که فعلا فعال نمی باشد حدودا برای دور آرام می باشد. 

مرحله 2 ( دور متوسط ) : فشار هیدرولیکی ( قسمت نارنجی رنگ در شکل ) اسبکهای سمت چپ و راست را به  

یکدیگرمتصل میکند درحالیکه اسبک میانی و بادامک آن به کارخودشان ادامه می دهند. ازآنجائیکه  بادامک سمت  

سمت راست بزرگتر از بادامک  سمت چپ  می باشد بادامکهای  متصل شده به یکدیگر حرکت خود را در واقع از  

بادامک سمت راست می گیرند. در نتیجه هر دو سوپاپ ورودی در تایمینگ دور آرام ولی با بلند شدن متوسط کار  

می کنند مرحله 3 ( دور بالا ) :  فشار هیدرولیک هر 3 اسبک را به یکدیگر متصل می کند. از آنجائیکه  بادامک  

میانی بزرگترین بادامک می باشد هر دو سوپاپ بوسیله بادامک دور بالا حرکت می کنند. بنابراین تایمینگ دور

بالا و حداکثر بلند شدن سوپاپ فراهم می شود. 

بقیه در ادامه مطلب بخوانید

بچه های مکانیک بازدید : 647 جمعه 27 بهمن 1391 نظرات (0)

منیفولد و سوپاپ 1 

منیفولدهای ورودی متغیر 

1- منیفولدهای طول متغیر  

2- سیستم ورودی انعکاسی  

انواع تایمینگ متغیر سوپاپ  

  با سیستم تغییر بادامک VVT 1-

  با سیستم بادامک مرحله ای VVT 2-

  با سیستم های تغییر بادامک + بادامک مرحله ای VVT3-

منیفولدهای ورودی متغیر 

منیفولدهای ورودی متغیر از اواسط دهه 90 بطور گسترده  رایج شدند. با استفاده از این سیستم گشتاور پایین در  

دور متوسط افزایش یافته بدون این که تاثیری بروی مصرف  سوخت یا قدرت در دورهای بالا داشته  باشد.  بد ین  

وسیله انعطاف پذیری موتور بهبود می یابد. یک منیفولد  معمولی برای قدرت درسرعت بالا یا گشتاو در دورپایین

و یا یک  توازن بین آنها بهینه سازی می شود اما منیفولد ورودی متغیر یک یا بیش از دومرحله برای انجام وظیفه  

در سرعت مختلف موتورمطرح میکند گفته میشود  نتایج استفاده ازاین سیستم شبیه استفاده ازسیستم تایمینگ  

متغیرسوپاپ(VVT) می باشد اما مزیت منیفولد ورودی متغیر این است که  گشتاور دور پایین را بیش ازقدرت در  

در دور بالا افزایش می دهد. بنابراین این  سیستم برای خودروهای چهار در(sedan) که هر روز سنگین و سنگین

تر می شوند خیلی مفید می باشد. با افزایش خودروهایی که خصوصیات اسپورت دارند مانند  Ferrari 360 M  و

550 M از منیفولدهای ورودی متغیر در کنار تایمینگ متغیر سوپاپ برای قابلیت بهتر در حرکت استفاده می شود 

. در مقایسه  با  VVT  منیفولدهای  ورودی  متغیرارزانترمی باشند. برای این  که فقط به چند منیفولد ریخته گری 

شده و تعداد کمی سوپاپهای الکتریکی احتیاج دارند در مقابل VVT به تعدادی کار انداز هیدر  دقیق ومناسب

و یا  حتی تعدادی بادامک مخصوص و میل بادامک نیاز دارد. منیفولدهای ورودی دو نوع میباشند: منیفولدورودی

ورودی با طول متغیر و منیفولدهای ورودی انعکاسی . هر دو آنها  از هندسه منیفولدهای  ورودی برای رسیدن به  

یک هدف مشابه استفاده می کنند.

منیفولد ورودی طول متغیر

منیفولدهای ورودی طول متغیرمعمولا در خودروهای سواری چهار در(sedan) استفاده می شوند.دربیشتر 

طراحی ها از دو منیفولد با طول  متفاوت برای تغذیه هر سیلندر استفاده میشود.  منیفولدهای با طول بلند برای  

دورهای پایین و منیفولدهای  کوتاه برای دورهای بالا استفاده میشوند. فهمیدن اینکه چرا دور بالا به منیفولد کوتاه

احتیاج  دارد ساده  است  چون که با استفاده از آن مکش موتور بطور آزادانه و آسان صورت می گیرد. اما چرا در

دورهای پایین منیفولدهای با طول بلند مورد نیاز است ؟

چونکه استفاده از لوله های بلندتر باعث کاهش فرکانس هوای ورودی به سیلندر میشود  به گونه ای که با کاهش

دور موتور  تطابق زیادی دارد و باعث بهتر پر شدن سیلندر می شود و بدین ترتیب  گشتاور خروجی  را افزایش 

می دهد. از طرف دیگر منیفولد ورودی بلند تر جریان هوا را به آرامی هدایت می کند که باعث بهتر مخلوط شدن  

سوخت و هوا می شود.  

بعضی از سیستمهای طول متغیرارائه شده سه مرحله دارند که از این نوع درAudi V8 استفاده شده است.  

درحقیقت  Audi از منیفولدهای جداگانه استفاده نمی کند. در عوض از یک منیفولد ورودی دورانی که ورودی آن

در مرکز روتور آن واقع است استفاده می کند. چرخش مجرای ورودی به وضعیتهای مختلف باعث ایجاد طولهای

مختلف در منیفولد می شود.  

ترتیب احتراق به گونه ای است که سیلندرها بطور متناوب از هر یک از محفظه ها تنفس می کنند که باعث ایجاد

یک موج فشاری بین آنها م شود. اگر فرکانس موج فشار با دور تطابق داشته باشد  می تواند به پرشدن  سیلندر  

کمک کند بدین ترتیب راندمان مکش افزایش یافته. فرکانس تولیدی به سطح مقطع لوله های متصل شده بستگی 

دارد. با بستن یکی ازآنها دردور پایین سطح مقطع به خوبی فرکانس را کاهش می دهد بدین گونه گشتاورخروجی  

در دور متوسط افزایش می یابد. در دور بالا سوپاپ باز شده و بهتر پر شدن سیلندر را فراهم می کند.

سیستم ورودی انعکاسی در مدلهای مختلف پورشه استفاده شده  که اولین آن 964 Carrier بود. در مدل 993

پورشه این سیستم را با منیفولد طول متغیر سه مرحله ای به نام Varioram ترکیب کرد. بخاطر اینکه این سیستم

فضای زیادی را اشغال می کرد در مدل 996 فقط ازسیستم ورودی انعکاسی استفاده شد. هوندا  NSX نیز ازدیگر

استفاده کنندگان نادر سیستم ورودی انعکاسی می باشد.

کمتر از rpm5000 (چپ   Aوراست بالا):لوله های بلند وسیستم   انعکاسی غیر فعالند. 

RPM5800-5000   )چپB و راست وسط) : لوله های بلند بعلاوه لوله کوتاه ورودی انعکاسی . یکی از لوله

های متصل شده ورودی انعکاسی بسته است.

RPM5800 (چپ C و راست پایین ): لوله های بلند بعلاوه لوله کوتاه ورودی انعکاسی و هر دو لوله سیستم  

ورودی انعکاسی باز میشود . 

خلاصه منیفولدهای ورودی متغیر 

                                                                       مزایا  

بهبود گشتاور تحویلی در دور پایین بدون کاهش قدرت در دور بالا و ارزانتر بودن نسبت به تایمینگ متغیرسوپاپ

VVT)).

معایب

تقریبا فضای زیادی اشغال می کند و تاثیری در افزایش گشتاور در دور بالا ندارد. 

Toyota T-VIS

بیشتر موتورهای  4  سوپاپ اولیه در دورهای پایین و متوسط گشتاور خوبی تولید نمی کردند. برای اینکه سطح  

ورودی بزرگتر باعث کاهش  جریان هوا می شد. مخصوصا درسرعتهای پایین  جریان  هوای  آرام در منیفولد  

ورودی یک مخلوط سوخت و هوای ناقص را فراهم می کند. بنابر این باعث ایجاد دتونیشن (Knock) و کاهش  

قدرت و گشتاور می شود.  بنابراین موتورهای  4  سوپاپ در دورهای بالا قوی می باشند اما در دورهای پایین  

ضعیف بودند تا وقتیکه تکنولوژی منیفولدهای ورودی متغیر رایج شد. شورولت Cosworth Vega  که در دور  

پایین ضعیف بود این کار را انجام داد.

منیفولد ورودی دورانی برای موتورهای V6مرسدس بنز مدلهای SLK,CLS,E-class که برای کاهش وزن از  

جنس منیزیم ساخته می شوند.  در واکنش به آن در واسط دهه 80 سیستم ورودی متغیر تویوتا  T-VIS  را تولید  

کرد. T-VIS به سرعت کم  جریان هوا در منیفولد شتاب میدهد. تئوری این مسئله ساده می باشد. منیفولد ورودی  

برای هر سیلندر به دو زیرمنیفولد (sub-manifold) تقسیم میشود که درنزدیکی سوپاپ ورودی به یکدیگرمتصل  

متصل میشوند. یک سوپاپ پروانه ای نیز به یکی ا ز زیر منیفولدها  اضافه شده است.  در دورهای کمتراز تقریبا  

4650 rpm  سوپاپ پروانه ای برای افزایش سرعت در منیفولد می بایست بسته  باشد. در نتیجه مخلوط خوبی را

در منیفولد بدست می آوریم موتورهای تزریق مستقیم از استفاده ازاین سیستم محرومند. زیراسیستم تزریق

 مستقیم  فضای زیادی را در منیفولد اشغال می کند

تایمینگ متغیر سوپاپ VVT

تئوری  

 بعد از اینکه تکنولوژی چند سوپاپ ( Multi  Valve) در طراحی موتورها استاندارد شد تایمینگ متغیر سوپاپ

مرحله بعدی افزایش راندمان موتور می باشد.همانطور که می دانید سوپاپ ها تنفس موتور را فراهم می کنند.

تنظیم تنفس که همان تنظیم سوپاپ های  ورودی و خروجی می باشد بوسیله شکل و زاویه بادامک ها کنترل می

شود. برای  بهینه سازی  تنفس موتور به تنظیم  سوپاپ مختلف در دورهای متفاوت نیاز می باشد. وقتی که  دور

افزایش می یابد  مدت زمان کورس مکش و تخلیه کاهش می یابد بنابراین  هوای تازه به میزان  کافی نمی تواند

سریع وارد محفظه احتراق شود درحالیکه گازهای اگزوز نیز با سرعت کافی  محفظه احتراق را ترک نمی کنند.

بنابراین بهترین راه حل باز شدن زودتر سوپاپ ورودی  و دیرتر  بسته شدن  سوپاپ خروجی  می باشد. بعبارت  

دیگر زمان قیچی (Overlapping) سوپاپ ورودی و خروجی با افزایش دور موتور باید افزایش یابد.  مهندسین  

سابقا بهترین  تایمینگ سوپاپ را بصورت توافقی انتخاب می کردند. برای مثال یک  وانت بخاطر بازده بهتر در  

دور پائین ممکن است زمان قیچی کمتری را بکار گیرد اما یک ماشین مسابقه ای بخاطر قدرت بیشتر در دور بالا  

ممکن است زمان  قیچی قابل ملاحظه ای را بکار گیرد.  در خودروهای سواری معمولی ممکن  است تایم سوپاپ

بهینه برای دور متوسط بکار گرفته شود  تا هم در دور کم قابلیت خوبی داشته باشد و همچنین  قدرت در دور بالا

خیلی کاهش نیابد و شبیه موتورهای دیگر که برای یک دور معین بهینه سازی میشوند  نباشند. با  تایمینگ  متغیر

سوپاپ قدرت و گشتاور می تواند در یک محدوده عریض بهینه شود.  

بیشترین نتایج قابل توجه عبارنتد از :  

Ø        موتور می تواند در دور بالاتری کار کند بنابراین حداکثر قدرت تولید می شود. برای  مثال قدرت ماکزیمم  

Ø        موتور نیسان 2 لیتری Neo VVL 25% بیشتر از نمونه بدون VVT آن می باشد.  

Ø        افزایش گشتاور در دور پائین ، بنابراین نیروی محرکه بهبود می یابد. برای مثال موتور فیات   

نمودار منیفولد

بلند شدن متغیر سوپاپ  Variable Lift

در بعضی از طراحی ها بلند شدن سوپاپ می تواند بر حسب دور موتور متغیر باشد. در دوربالا افزایش بلند شدن  

شدن سوپاپ ورود هوا و خروج گازهای اگزوز را تسریع می کند  بنابراین  تنفس موتور را بهبود می بخشد. البته  

بلند شدن این چنینی در دور آرام اثر معکوسی شبیه ناقص مخلوط شدن سوخت و هوا ایجاد میکند بنابراین بازده  

را کاهش می دهد و یا حتی منجر به خاموش شدن موتور (misfire)  می شود. بنابراین  بلند شدن سوپاپ  باید بر  

. طبق دور موتور باشد.

منبع : مهندس مهدی ملازم (مشهد مقدس)

بچه های مکانیک بازدید : 1094 جمعه 27 بهمن 1391 نظرات (0)

تایمینگ سوپاپها و فیلر گیری و قیچی سوپاپها

تایمینگ

 

در مبحث اشنایی  با کار  موتور در دو زمان مکش و  تخلیه  فرض  شد که  سوپاپ  هوا و  دود در نقطه ای

مرگ بالا و مرگ پایین باز و بسته می شود قبلا  نیز  توضیح  داده شد  که در تعریف چهار عمل زمان تئوری

باز و بسته  شدن  سوپاپها  بیان شده  است  در صورتی که  عملا و همانطوریکه  از  روی  شکل مشخص

می باشد سوپاپ دود در زمان احتراق 45 در جه قبل از نقطه مرگ پایین باز می شود البته قابل ذکر است

که این مقدار در ماشینهای  مختلف با هم فرق دارند و تا 5 درجه بعد از نقطه مرگ بالا یعنی در زمان مکش

باز نگهداشته شود این زمان بخاطر این است که مقداری بیشتر دود از سیلندر خارج گردد موقعیکه سوپاپ

دود 45 درجه قبل از نقطه مرگ پایین باز می شود فشار گاز بمیزان قابل توجهی تنزل پیدا می کند و مقدار

کمی قدرت  تلف  می گردد  ولی در عوض مقدار بیشتری دود از سیلندر خارج می شود و به تنفس موتور

 کمک می کند به همین ترتیب باز کذاشتن سوپاپ گاز تا 45 درجه بعد از نقطه مرگ پایین در زمان تراکم به

مخلوط گاز زمان  بیشتری برای وارد شدن به سیلندر می دهد تایمینک سوپاپ بستگی به شکل برامدگی

بادامک  میل سوپاپ و ارتباط  چرخ دنده یا چرخ زنجیر میل لنگ و یل سوپاپ دارد تغییر دادن وضعیت چرخ

دنده ها نسبت به یکدیگر زمان باز و بسته شدن سوپاپها را تغییر می دهد مقدار باز شدن زودتر از موقع را

اوانس یا پیش عمل و دیر بسته شدن پیش از موقع را ریتارد یا پس عمل می گویند

 

دلیل وجود اوانس سوپاپ هوا (تایمینگ سوپاپ ها )

1- کمک به خروج دود       2- بالاتر رفتن راندمان حجمی بعلت بیشتر باز بودن سوپاپ هوا

 

دلیل وجود ریتارد سوپاپ هوا (تایمینگ سوپاپ ها )

بالاتر رفتن راندمان حجمی – پر شدن بیشتر بخاطر سرعت هوا بعلت فشار منفی خلا که بر اثر پایین رفتن

پیستون بوجود امده است

 

دلیل وجود اوانس سوپاپ دود (تایمینگ سوپاپ ها )

برای اینکه زمان  بیشتری برای تخلیه دود – پایین امدن  فشار هوا در اواخر مرحله احتراق و جلوگیری از

فشار دود در مرحله تخلیه

 

دلیل وجود ریتارد سوپاپ دود (تایمینگ سوپاپ ها )

کمک به تخلیه کامل دود بر اثر سردی و گرمی مخلوط و دود –باز بودن بیشتر برای تخلیه کاملتر

 

فیلر گیری موتور و لزوم ان

فیلر گیری یکی از  مهمترين و ضروری ترین عملی است که تعمیر کار باید این عمل (فیلرزدن )را انجام دهد

هر جسمی بر اثر حرارت  منبسط شده و بر طول و قطر و  حجمش  افزوده می شود قطعاتی که در موتور

بکار  رفته اند  در  مقابل حرارت انبساط  پیدا می کنند  که در هنگام طراحی  موتور با  محاسبه  این  مقدار

انبساط را  بخوبی جبران می کنند یکی از سیستمهای که انبساط در انها محسوس بوده و برای کار موتور

تاثیر بسزایی دارد سیستم حرکت سوپاپها می باشد که کارخانه سازنده با توجه به جنس و حجم و ضریب

انبساط قطعات مقداری فاصله بین انها در نظر گرفته است تا در هنگام انبساط این فاصله پر شود و کار باز

 و بسته شدن سوپاپها مختل نگردد در صورت عدم وجود  این  لقی  قطعات  در برابر گرما منبسط  شده  و

چون  میدان  حرکتی در جهت  طولی ندارند به هم  فشار اورده  باعث  سائیدگی  تاب  برداشتن  و  خرابی

قطعات می گردند مقدار این لقی توسط  کارخانجات  سازنده اندازه گیری و اعلام شده و انرا با فیلر اندازه

و تنظیم میکنند

 

نکات لازم برای فیلر گیری موتور

1- شناخت سوپاپها برای فیلر گیری       2- مقدار لقی و فاصله مجازی که باید برای سوپاپها با فیلر میزان

کنیم بدست اورده باشیم           3- این مقدار لقی بسته به دستور کارخانه باید در حالت سرد یا گرم برای

فیلر گیری موتور ماشین ضروری است         4- شناخت احتراق سیلندر های مورد نظر برای فیلر گیری از

راههای مختلف          5- اماده کردن فیلر با شناخت نوع ماشین و تبدیل فیلر در صورت نیاز قبل از تشریح

فیلر گیری به شناخت حالات و بدست اوردن ترتیب ان می پردازیم

فیلر

 

قیچی سوپاپهای موتور

 

قیچی سواپ ها در کار موتور تاثیر زیادی دارد برای  اینکه یک سیلندر در حالت تنفس قرار گیرد لازم است

سوپاپ هوای ان شروع به باز شدن کند وقتی که پیستون از نقطه مرگ بالا بطرف نقطه مرگ پایین حرکت

می کند و  سوپاپ هوا باز است  و در حالت تخلیه که  پیستون  از نقطه مرگ پایین به طرف نقطه مرگ بالا

حرکت می کند  سوپاپ دود باز است  تا دود از داخل سیلندر تخلیه شود در قسمت تایمینگ سوپاپها دیدیم

که  سوپاپ  هوا  چند  درجه مانده  که پیستون به نقطه  مرگ بالا  برسد باز  شده که این  نوع باز شدن را

اوانس سوپاپ  هوا  نامیدیم زمانی که میل لنگ را می چرخانیم ابتدا سوپاپ دود باز شده تا در زمان تخلیه

دود تخلیه شود و سپس  سوپاپ  دود  شروع به بسته  شدن  کرده  و  در انتهای بسته شدن سوپاپ دود

دود سوپاپ  هوا شروع به باز شدن می کند این حالت یعنی اخر بسته شدن سوپاپ دود و اول باز شدن

سوپاپ هوا را قیچی سوپاپ  (اله کلنگی) یا بالانس می گویند باز و بسته شدن سوپاپ را میتوان از روی

فنر یا حالات اسبک و در موتورهای  میل  سوپاپ  رو ز شکل بادامک میل سوپاپ تشخیص داد برای فیلر

گیری صحیح باید زمان سوپاپ ها و فاصله اسبک  یا  تایپت را با هم میزان کرد که تایمینگ سوپاپها در انها

تاثیر نداشته  باشد و با توجه   به دیاگرام سوپاپ  متوجه می شویم  زمانی که پیستون در حالت احتراق

است تایمینگ سوپاپ ها در ان هیچ گونه تاثیری ندارد  پس بهترین حالت  برای فیلر گیری زمانی است که

یک  سیلندر  در اول حالت احتراق  باشد و  پیستون  در  نقطه مرگ  بالا باشد  در مجموع  دانستن  قیچی

سوپاپها برای یک تعمیر کار ضروری می باشد

 

 منبع : اتومکانیک به زبان ساده ( مهندس احمد امیر تیموری

بچه های مکانیک بازدید : 592 جمعه 27 بهمن 1391 نظرات (0)

تايمينگ متغير سوپاپ

طول مدت زمان و لحظه ای که در آن سوپاپهای ورودی و تخلیه باز و بسته میشوند ، تنها در دور موتور خاص و مشخصی حداکثر بازده را ایجاد میکند و هر چه دور موتور تغییر بیشتری نماید ، بازده موتور کاهش پیدا میکند ، به همین دلیل مهندسن سیستمی را در موتورهای جدیدتر ابداع کرد ه اند که تایمینگ یا زمانبندی با توجه به دور موتور تغییر پیدا می نماید

اکثر علاقمندان به اتومبیل و صنایع خودروسازی با وازه VVT-i که روی بدنه انواع تویوتا های جدید ، سیستم Vanos موتورهای ب ام و و سیستم V-Tec هوندا تا حدودی آشنا هستند و بعضا جویای مفهوم آن شده اند .این وازه ها هر یک معرف سیستم تایمینگ یا زمانبندی متغیر باز و بسته شدن سوپاپها در موتورهای ساخت کارخانه های مربوطه می باشند . هدف از ارائه چنین سیستمهائی افزایش بازده موتور در تمام شرائط کاررد آن اعم از دور موتور مختلف و شرائط محیطی متفاوت می باشد. در موتورهای قدیمی تر متخصصین با در نظر گرفتن شرائطی که موتور برای آن در نظر گرفته شده میل سوپاپ با تایمینگ مناسب را برای آن انتخاب نموده اند که البته این امر دارای محدودیتهای زیادی است ، بعنوان مثال میل سوپاپ اصطلاحا درجه بالا برای مسابقات و افزایش بازده در دور بالا بسیار مناسب بوده که این افزایش قدرت در دور بالا به قیمت کاهش چشمگیر گشتاور و قدرت در دورهای میانی و پائین موتور می شود و عملا موتور را در دورهای پائین ( مثلا در شهر) غیر قابل استفاده می نماید .
طول مدت زمان و لحظه ای که در آن سوپاپهای ورودی و تخلیه باز و بسته میشوند ، تنها در دور موتور خاص و مشخصی حداکثر بازده را ایجاد میکند و هر چه دور موتور تغییر بیشتری نماید ، بازده موتور کاهش پیدا میکند ، به همین دلیل مهندسن سیستمی را در موتورهای جدیدتر ابداع کرد ه اند که تایمینگ یا زمانبندی با توجه به دور موتور تغییر پیدا می نماید . قبلا از بررسی این سیستم ابتدا اشاره ای خواهیم داشت به طرز کار موتور چهار زمانه .
هنگامی که پیستون در وضعیت TDC ) نقطه مرگ بالا یعنی بالاترین نقطه در داخل سیلندر ) قرار دارد ، سوپاپهای ورودی در حالی که پیستون به سمت پائین در حرکت است باز میشوند ، در این هنگام با آغاز پائین رفتن مخلوط هوا و سوخت به داخل سیلندر مکیده میشوند که به این مرحله مکش گفته میشود .
هنگامی که پیستون به پائین ترین نقطه ممکنه در داخل سیلندر میرسد ، سوپاپهای ورودی بسته شه و مخلوط هوا و سوخت در داخل سیلندر محبوس می گردد . در مرحله بعد پیستون به سمت بالا حرکت کرده و به تدریج مخلوط سوخت و هوا را فشرده میسازد که به این مرحله تراکم (Compression) گفته میشود . شمع هنگامی که پیستون مجددا به بالاترین نقطه ممکن میرسد ( یا نزدیک به آن میشود ( جرقه می زند . انفجار کنترل شده حاصله ، پیستون را با نیروی زیادی به پائین رانده و نیروی مکانیکی تولید مینماید که به آن مرحله تولید نیرو با قدرت گفته میشود . بعد از رسیدن پیستون به پائین ترین نقطه ممکن ، سوپاپ اگزوز باز شده و بر اثر بالا آمدن مجدد پیستون ، گازهای حاصل از احتراق تخلیه میگردند که به این مرحله تخلیه گفته میشود . در طی این مراحل که در تمام موتورهای چهار زمانه بنزینی مشترک است ، زمان باز و بسته شدن سوپاپها اهمیت زیادی داشته و در استفاده بهینه از سوخت و ایجاد حداکثر بازده موثر است . در این مقاله سعی شده عوامل موثر بر تعیین و تنظیم تایمینگ سوپاپها هر چند بطور اجمالی مورد بررسی قرار گیرد .
بسته شدن سوپاپ ورودی :
سوپاپ ورودی معمولا چند درجه ( منظور از چند درجه ، مقدار زاویه دوران میل لنگ است ) بعد از پائین ترین وضعیت ممکنه پیستون در داخل سیلندر و در حالی که پیستون برگشت به سمت بالا را در داخل سیلندر آغاز نموده ، بسته میشود ،چرا ؟
به نظر میرسد اگر سوپاپ ورودی در حالی که پیستون به سمت بالا در حال حرکت است باز بماند مقدار زیادی از مخلوط هوا و سوخت از مسیر ورود به بیرون رانده شود ، ولی در عمل چنین اتفاقی رخ نمی دهد ، زیرا با توجه به سرعت بسیار زیاد ورود مخلوط به سیلندر ) حدود ۸۰۰ کیلومتر در ساعت ) ، مخلوط انرژی جنبشی پیدا کرده و بعد از رسیدن پیستون به پائینترین وضعیت در داخل سیلندر جریان آن ادامه پیدا کرده و حتی اندکی پس از شروع مرحله بالا رفتن پیستون جریان ادامه دارد . این مرحله تا ابد ادامه پیدا نمیکند و پیستون بالا رونده در مقطعی خاص و در صورتی که سوپاپ ورودی باز باشد به انرژی جنبشی مخلوط غلبه کرده و آنرا به داخل مسیر ورودی سیلندر پس میزند .
پس ، بهترین وضعیت پر شدن یا اشباع سیلندر هنگامی صورت میگیرد که بسته شدن پیستون تا لحظات اولیه پس زد مخلوط به تعویق افتد ، یعنی ضمن بهره گیری از حداکثر ( انرژی جنبشی ) مخلوط ، از هدر رفتن آن جلوگیری شود و سیلندر تا حد اکثر ممکن از مخلوط پر شود .
باز شدن سوپاپ اگزوز :
اگر سوپاپ ورودی بعد از رسیدن پیستون به پائین ترین وضعیت ممکنه (TDC) در داخل سیلندر بسته نشده باشد و یا سوپاپ اگزوز که قبلا راجع به آن گفتیم در هنگام رسیدن پیستون به پائین ترین وضعیت ممکن باز شود چه اتفاقی خواهد افتاد ؟ اگر معتقدید که چنین اتفاقی ممکن نیست ، درست حدس زده اید . در واقع سوپاپ اگزوز قبل از رسیدن پیستون به پائین ترین وضعیت ممکن ، باز میشود . پیستون در مرحله تولید نیرو تحت تاثیر گازهای گرم به پائین رانده شده و نیروی تولید شده خودرو را به جلو می راند . با این تفاسیر چرا بعضا طراحان و مهندسین سعی دارند تا سوپاپ اگزوز کمی زودتر باز شده و مقداری از فشار داخل سیلندر کم شود؟
برای درک بهتر دلیل باز شدن سوپاپ اگزوز کمی قبل از رسیدن پیستون به پائین ترین وضعیت ممکن ، باید اشاره ای به مرحله بعدی که مرحله تخلیه سیلندر است داشته باشیم، تخلیه گازهای خروجی از طریق سوپاپ اگزوز ، در هنگام بالا آمدن پیستون نیازمند نیرو میباشد ، که این نیرو توسط مل لنگ وارد میگردد ، اگر سوپاپ اگزوز هنگامی که هنوز مقداری فشار حاصل از احتراق در سیلندر باقی مانده باز شود ، باعث می گردد که مقداری از گازهای حاصل از احتراق تحت تاثیر این فشار قبل از حرکت پیستون به بالا از سیلندر خارج شوند . با کاهش مقدار گازها ، نیروی مورد نیاز برای تخلیه سیلندر کم شده و نتیجتا بازده موتور افزایش پیدا می کند
● Overlap
یا باز بودن همزمان سوپاپها:
پیستون در مسیر خود به سمت بالاترین وضعیت ممکن الباقی گازهای حاصل از احتراق را به بیرون می راند . جریان گازهای خروجی نیز مثل جریان هوای ورودی دارای انرژی جنبشی است یعنی اینکه حتی بعد از رسیدن پیستون به بالاترین وضعیت ممکن و شروع مرحله پائین آمدن پیستون جریان گاز خروجی ادامه دارد ، بدین ترتیب میتوان بسته شدن سوپاپ را تا بعد از رسیدن پیستون به بالاترین وضعیت ممکن به تعویق انداخت .
لازم بیادآوری است که هدف مکش بیشترین حجم مخلوط هوا و سوخت میباشد زیرا نیروی موتورهای درون سوز از احتراق مخلوط سوخت و هوا در داخل سیلندر ایجاد میگردد . بهترین مکش هنگامی صورت میگیرد که سوپاپ ورودی قبل از رسیدن پیستون به بالاترین وضعیت ممکن باز شود . در این لحظه سوپاپهای ورودی و سوپاپهای اگزوز به طور همزمان باز میباشند که این مرحله را Overlap یا مدت زمان باز بودن همزمان سوپاپهای ورودی و خروجی می نامند .
در اینجا این سؤال مطرح میشود که چرا گازهای خروجی که توسط پیستون به بیرون رانده میشوند ، وارد منیفولد ورودی نمیگردند ، جواب این است که طراحی مناسب منیفولد اگزوز و فشار نسبی کمتر داخل آن باعث میشوند که گازهای خروجی تحت تاثیر فشار کم منیفولد خروجی ( اگزوز ) افزایش سرعت پیدا کرده و از سیلندر خارج گردند ، انرژی جنبشی گازهای خروجی نیز بنوبه خود باعث کاهش فشار داخل سیلندر و مکش بیشتر مخلوط هوا و سوخت به داخل آن میگردند .
لحظه بسته شدن سوپاپ ورودی مهمترین نکته در تایمینگ میل سوپاپ است ، هر چند که تمام مراحل آن از اهمیت به سزائی برخوردارند . به عنوان مثال تایمینگ صحیح باز شدن سوپاپ خروجی در واقع نقطه تعادلی از کاهش مقدار کمی از نیروی تولید شده در مرحله تولید نیرو و کاهش مقداری از بار گازهای خروجی در مرحله تخلیه است ، طول مدت Overlap نیز شدیدا در دور موتور تاثیر گذار است . در موتورهائی که مجهز به سیستم تایمینگ سوپاپ معمولی هستند ، رابطه بین تایمینگ سوپاپها ثابت است . در موتورهائی که دارای یک میل سوپاپ هستند این مسئله به شکل بادامکهای روی میل سوپاپ بستگی داشته و در موتورهای مجهز به دو میل سوپاپ به زاویه میل سوپاپها نسبت به یکدیگر بستگی دارد ( در هنگام تنظیم تایمینگ در موتورهای مجهز به دو میل سوپاپ در بالای سر سیلندر (DOHC) ، پرش یک دندانه فولی سر سیلندر باعث تغییر در میزان Overlap میگردد ) . تایمینگ سوپاپها بستگی زیادی به انرژی جنبشی جریان گاز دارد ، لازم به ذکر است که هر چقدر سرعت جریان گاز بیشتر شود ، انرژی جنبشی آن به همان نسبت افزایش پیدا میکند . بدین ترتیب تغییر تایمینگ با توجه به سرعت ( دور ) موتور ، مزیتهای زیادی در بر دارد . با استفاده از این سیستم میتوان جریان گازهای ورودی و خروجی را در تمام دورهای موتور به بهترین نحو تنظیم نمود و نتیجتا گشتاور بیشتری را در تمام دورهای موتور ایجاد کرد و باعث گسترش دامنه و محدوده تولید نیروی موتور گردید .
تایمینگ متغیر سوپاپ :
انواع سیستمهای تایمینگ متغیر سوپاپ مختلفی وجود دارند که تفاوتهای مکانیسم های عملکردی آنها نسبت به عملکرد کلی شان از اهمیت کمتری برخوردار است . تا چند وقت پیش در اکثر سیستمهای تایمینگ متغیر میل سوپاپ ، تنها یکی از دو میل سوپاپ موتور متغیر بود که البته این تغییر تنها به میزان یک پله انجام می گرت . در این سیستم در زمان افزایش دور موتور و یا در محدوده مشخصی از آن ، ECU ( واحد کنترل الکترونیکی ) تایمینگ میل سوپاپ را تغییر میدهد و بدین ترتیب یکی از میل سوپاپها در وضعیت آوانس یا ریتارد قرار میگیرد .
در خیلی از موتورهائی که مجهز به دو میل سوپاپ در سر سیلندر میباشند (DOHC) این نوع سیستم باعث میگردد تایمینگ سوپاپهای اگزوز ( بر خلاف تصور عمومی که حاکی از اهمیت بیشتر سوپاپهای ورودی است ) تغییر پیدا کند ، البته در برخی انواع نادرتر ، تایمینگ سوپاپهای ورودی تغییر میکند .
نمونه ای از نوع دوم در برخی اتومبیلهای پورشه مشاهده میگردد . در یکی از مدلهای Porsche ۹۱۱ که مجهز به سیستم Vario Cam است ، این سیستم باعث میگردد تا تایمینگ سوپاپ ورودی بعد از رسیدن دور موتور به ۱۳۰۰ دور در دقیقه ، ۲۵ درجه تغییر کند و نتیجتا محفظه احتراق بهتر پر و خالی شود و گشتاور افزایش پیدا کند . بعداز رسیدن دور موتور به حد ۵۹۲۰ دور در دقیقه ، تایمینگ ۲۵ درجه کاهش پیدا میکند و به حد اولیه ( دور آرام ) باز می گردد و عملکرد موتور در دور موتور بالا را بهبود می بخشد . در مواقعی که درجه حرارت روغن موتور بالا رفته باشد این تغییر در دور موتور ۱۵۰۰ دور در دقیقه انجام می گیرد .
سیستمهای اولیه که در آن تنها تایمینگ یک میل سوپاپ تغییر پیدا میکند هر چند که بهتر از سیستمهای تایمینگ ثابت عمل میکنند ، با این وجود کاملا قانع کننده نیستند . موتورهای مجهز به این سیستم تنها در دو حالت و دور موتور خاص دارای عملکرد بهینه هستند . واضح است که تغییرات کوچک و متعدد تایمینگ حتی اگر در مورد یکی از میل سوپاپها اعمال شود بهتر است و اگر تایمینگ هر دو میل سوپاپ قابل تغییر باشد نور علی نور خواهد بود . دراین حالت تایمینگ هر دو میل سوپاپ دائما با توجه به شرائط عملکرد موتور ، در حال تغییر خواهند بود .
BMW
اولین شرکت بود که از سیستم دو میل سوپاپ متغیر استفاده نمود و آنرا Double Vanos نامید ، ( سیستم Single Vanos آنها تنها بر یک میل سوپاپ تاثیر گذار بود ) . در موتورهای مجهز به Double Vanos ، تایمینگ هر یک از میل سوپاپها تا ۶۰ درجه تغییر میکند ، البته در موتورهای V۸ مدل M۵ میل سوپاپ ورودی تا ۵۴ درجه و میل سوپاپ اگزوز " تنها " ۳۹ درجه قابل تنظیم است و بدین ترتیب Overlap ( مدت زمان باز بودن همزمان سوپاپهای ورودی و خروجی ) از ۸۰ درجه تا ۱۲- درجه قابل تنظیم است . منظور از ۱۲- درجه این است که سوپاپهای اگزوز ۱۲ درجه قبل از باز شدن سوپاپهای ورودی بسته میشوند .
لیفت (lift)متغیر سوپاپ :
سیستم VTEC ساخت HONDA از این جهت مشهور است که در آن لیفت و تایمینگ سوپاپ قابل تغییرند . در سیستم HONDA ، میل سوپاپهای هر سیلندر دارای دو بادامک بلند اضافی و دو انگشتی اضافی میباش که در دور موتورهای پائین هرز میگردند . در دور موتور خاص ( معمولا دور موتور بالا ) پیمهای هیدرولیکی که بطور الکترونیکی کنترل میشوند هر سه انگشتی را به یکدیگر قفل کرده و نتیجتا بادامکهای بلندتر وارد عمل میشوند . بدین ترتیب تغییر تایمینگ و لیفت سوپاپ در یک مرحله صورت میگیرد و باعث تغییر عمده ای در عکس العمل موتور میگردد .
موتور ۲ZZ – GE تویوتا با حجم cc ۱۸۰۰ که در نسل آخر تویوتا سلیکا مورد استفاده قرار گرفته است نیز از تایمینگ و لیفت متغیر سوپاپ بهره میبرد . سیستم لیفت متغیر تویوتا هم بر سوپاپهای ورودی و هم بر سوپاپهای اگزوز تاثیر گذار است ، در این موتور تنظیم لیفت بلند میل سوپاپ در ۶۰۰۰ دور در دقیقه فعال میشود . بادامکهای بلند ، لیفت سوپاپ ورودی را ۵۴ درصد افزایش داده و به mm ۱۱.۲ میرسانند ، لیفت سوپاپ اگزوز نیز با ۳۸ درصد افزایش به mm ۱۰ میرسد .
میل سوپاپهائی که دارای لیفت زیاد هستند ، باعث افزایش مدت زمان باز ماندن سوپاپ ورودی میگردند ، بدین ترتیب هر Overlap سوپاپها از چهار درجه ( در حالت تنظیم ورودی کاملا ریتارد و لیفت دور پائین ) و ۹۴ درجه ( در حالت فول آوانس و لیفت دور بالا ) متغیر است . Overlap ۹۴ درجه معمولا در موتورهای کاملا مسابقه ای (Full race) به چشم می خورد . لازم به ذکر است نسل قبلی تویوتا سلیکا (Celica) که مجهز به موتور ۵S – FE و تنها دارای Overlap ۶ درجه بود و موتور اسپرتی cc ۲۰۰۰ با نام ۳S – GE در اولین مدل سلیکا دیفرانسیل جلو تنها ۱۴ درجه Overlap داشت .
تایمینگ میل سوپاپ ورودی با توجه به دور موتور ، وضعیت پدال گاز ، زاویه سوپاپ ورودی ، درجه حرارت مایع خنک کننده موتور و حجم هوای ورودی تغییر میکند . تایمینگ میل سوپاپ ورودی در هنگام آغاز به کار موتور  ( استارت ) ، سرد بودن موتور ، دور آرام و خاموش کردن موتور ، تا حد ممکن ریتارد میشود . یک پیم کنترل کننده تایمینگ میل سوپاپ را در هنگام استارت و در مرحله پس از آن قفل مینماید تا جائی که فشار روغن مناسب برقرار شود ( این تدبیر برای جلوگیری از سر و صدای اضافی موتور اتخاذ شده است ) .
در سیستم VVTI تویوتا ، تایمینگ میل سوپاپ تا ۴۳ درجه نسبت به زاویه میل لنگ متغیر است . البته سیستم لیفت متغیر نیز در طول مدت زمان باز بودن سوپاپ تاثیر گذار است و بدین ترتیب تایمینگ را به ۶۸ درجه میرساند ( با توجه به اینکه در وضعیت حداکثر ریتارد سوپاپ ورودی در دور موتور متوسط ، تایمینگ ۱۰- ( ۱۰ درجه قبل از TDC ) تا حداکثر آوانس سوپاپ ورودی در دور بالا که ۵۸ درجه قبل از TDC ( بالاترین وضعیت قرار گرفتن پیستون در سیلندر ( است متغیر می باشد ( .
سیستم لیفت متغیر از مکانیسم تعویض بادامک برای افزایش لیفت سوپاپهای ورودی و خروجی بعد از رسیدن دور موتور به ۶۰۰۰ دور در دقیقه استفاده میکند . این سیستم هیدرولیکی توسط ECU موتور که بخشی از سخت افزار کنترل هیدرولیکی آن با سیستم VVTI مشترک است استفاده میکند . اطلاعات ورودی های آن عبارتند از : زاویه و دور میل لنگ، حجم جریان هوا ، وضعیت دریچه گاز ، زاویه میل سوپاپ ورودی و درجه حرارت مایع خنک کننده . سیستم لیفت متغیر قبل از افزایش درجه حرارت مایع خنک کننده تا ۶۰ درجه سانتیگراد فعال نمیشود . این مکانیسم شامل میل سوپاپها با دو دست بادامک میباشد که یک دست آن برای دور پائین تا دور متوسط است و سری دوم برای دورهای بالاتر موتور به کار میرود ( لیفت بالا ) . کل سیستم شامل هشت انگشتی برای هر جفت سوپاپ ، دو انگشتی ( که در طرف داخلی میل سوپاپها قراردارند ) و یک دریچه کنترل روغن که در انتهای میل سوپاپ ورودی قرار دارند ، میباشد .
با وجود اینکه این نوع سیستمهای تایمینگ و لیفت متغیر تک مرحله ای باعث افزایش قدرت میگردند ، با این حال در کاربرد واقعی بسیار خام عمل مینمایند ، به عنوان مثال تغییر تک مرحله ای در گشتاور موتور در یک موتور توربوچارج شده قابل تحمل نمیباشد .
تایمینگ و لیفت متغیر سوپاپ :
چند خودرو ساز دیگر نیز از تغییر تایمینگ و لیفت تک مرحله ای استفاده مینمایند . جدیدا BMW سیستم Valvetronic را ارائه نموده که تحولی چشمگیر در این رابطه است . این سیستم به طور نامحسوس و غیر منقطع تایمینگ را در یکی از میل سوپاپها و لیفت سوپاپهای ورودی را تغییر میدهد . جالب ترین نکته در این سیستم عدم استفاده از پروانه دریچه گاز است زیرا موتور بازده حجمی خود را با تغییر لیفت سوپاپ ورودی تنظیم مینماید .
سیستم Valvetronic بر گرفته از سیستم Double Vanos ساخت همین شرکت است که تایمینگ میل سوپاپهای ورودی و خروجی ( اگزوز ) را به طور غیر منقطع تغییر میدهد و علاوه بر آن با استفاده از یک اهرمی که بین میل سوپاپ و سوپاپهای ورودی قرار دارد ، لیفت سوپاپهای ورودی را نیز تغییر میدهد . محور مخصوصی فاصله اهرم را از میل سوپاپ تغییر میدهد ، وضعیت محور فوق توسط یک سیستم الکتریکی تعیین میشود . وضعیت اهرم در واقع لیفت را به دستور سیستم مدیریت موتور کوچک یا بزرگ مینماید .
سیستم Valvetronic تنها از لحاظ عدم قابلیت لیفت سوپاپهای خروجی از سیستمهای الکترونیکی پنوماتیک   ( بادی ) مورد استفاده در موتورهای مسابقه ای F۱ ، که عملکرد سوپاپها به طور مستقل از هم و به طور انفرادی کنترل می کنند ، کم قابلیت تر است .
پس نتیجه میگیریم هر گونه قابلیت تغییر در تایمینگ با لیفت سوپاپ برای بهبود قابلیت تنفس ( تبادل هوا ) در هر محدوده عملکرد موتور باعث بهبود قابلیتهای آن میگردد . هر چقدر تنظیمات دقیق تر و تعداد سوپاپهای قابل تنظیم بیشتر باشد ، نتیجه نهائی بهتر خواهد شد و علاوه بر افزایش بازده باعث افزایش نرمی کارکرد و تسریع و بهبود عکس العمل موتور در تمام محدوده دور موتور آن میگردد . در موتورهای معموی تغییر زاویه میل سوپاپ و افزایش آوانس باعث بهتر شدن بازده موتور در دور بالا میشود . هر چند که عملا نری کارکد و بازده موتور را در دور پائین و دور متوسط بازده مختل میکند ( مثل میل سوپاپهائی که اصطلاحا به آنها فول ریس گفته میشود ( . در نقطه مقابل این نوع میل سوپاپها انواع معمولی قرار دارند که با وجود نرمی عملکرد در دور پائین و متوسط قادر به ارائه حداکثر بازده موتور در دور بالا هستند که به آنها انواع شهری یا معمولی گفته میشود .
سیستمهای متغیر امروزی که در این مقاله سعی نمودیم نگاهی هر چند کلی به سیر تکامل و آخرین تحولات آن داشته باشیم در واقع حداکثر بازده موتور را چه در دور پائین و متوسط و چه در دور بالا ایجاد مینماید . ضمن آنکه نرمی عملکرد موتور در دور آرام و راحتی استارت آن در سرما و گرما را تضمین مینماید .

منبع : ماهنامه خودرویاب - شماره۴ - دکتر رضا لواسانی

بچه های مکانیک بازدید : 627 جمعه 27 بهمن 1391 نظرات (0)

ميل لنگ و فلایویل

ميل لنگ يك قطعه ريختگي يكپارچه از آلياژ فولاد مي‌باشد كه با عمليات حرارتي و چكش‌كاري تهيه مي‌شود و داراي استحكام مكانيكي قابل توجهي است، ميل لنگ بايد به اندازه كافي محكم باشد تا بتواند ضربه‌هائي را كه در زمان احتراق به پيستون وارد مي‌شود بدون پيچش زياد تحمل نمايد. علاوه بر اين ميل لنگ بايد با نهايت دقت متعادل گردد تا از ارتعاشات آن كه در اثر وزن خارج از مرگز لنگ به وجود مي‌آيد جلوگيري به عمل آيد. براي متعادل ساختن ميل لنگ، در مقابل هر لنگ وزنه‌هائي به ميل لنگ اضافه شده است.

قدرتي كه از طرف پيستون‌ها به ميل لنگ داده مي‌شود يكنواخت نيست. موقعي كه زمان هاي قدرت با هم اشتراك پيدا مي‌كنند (در موتورهاي شش سيلندر و هشت سيلندر) لحظه‌اي وجود دارد كه در آن مقدار قدرت از زمان‌هاي ديگر بيشتر است، اين عمل موجب مي‌شود كه سرعت ميل لنگ كم يا زياد شود. البته چرخ لنگر بر اين تمايل غلبه مي‌كند. فلايول يك فلكه نسبتاً سنگين مي‌باشد كه به اتنهاي عقب ميل لنگ با پيچ و مهره بسته مي‌شود، اينرسي چرخ لنگر تمايل دارد كه آن را با سرعت ثابت حركت دهد بنابراين چرخ لنگر در موقعي كه ميل لنگ تمايل به افزايش سرعت داشته باشد قدرت را مي‌گيرد و هنگامي كه تمايل به كاهش سرعت داشته باشد قدرت را به آن پس مي‌دهد .

 

میل لنگ و فلاویل

                                  

علاوه بر اين عمل، چرخ لنگر در محيط‌ خارجي خود دندانه‌هائي دارد كه در موضع روشن كردن موتور با دنده محرك دستگاه استارت درگير مي‌شود. ضمناً دستگاه كلاچ به قسمت جلوي ميل لنگ سه قطعه مختلف سوار مي‌شود كه عبارتند از يك چرخ دنده يا چرخ زنجير كه ميل بادامك را به حركت در ميآورد، يك نوسان گير و يك پولي پروانه، پولي، توسط يك تسمه پروانه، پروانه، پمپ آب و ژنراتور را مي‌چرخاند.

چرخ لنگر

در موتورهاي چند سيلندر زمان‌هاي قدرت پشت سر هم به وجود مي‌آيد و يا اين كه مقداري با هم اشتراك دارند يعني هنوز يك زمان قدرت به پايان نرسيده قدرت ديگر توليد مي‌شود و به اين ترتيب قدرت به طور يكنواخت توليد مي‌گردد. با اين حال جريان قدرت به اندازه مطلوب يكنواخت نيست. اگر قدرت موتور باز هم يكنواخت‌تر گردد موتور آرام‌تر كار خواهد كرد. براي رسيدن به اين هدف از چرخ لنگر (فلايول) استفاده مي‌شود، چرخ لنگر يك فلكه نسبتاً سنگين مي‌باشد كه به عقب ميل لنگ موتور متصل شده است.

براي اين كه بهتر به كار چرخ لنگر پي ببريم يك موتور تك سيلندر را در نظر مي‌گيريم. اين موتور در هر چهار زمان يك زمان قدرت دارد. در ضمن زمان‌هاي سه گانه ديگر يعني در زمان تنفس كه خطوط هوا و بنزين وارد سيلندر مي‌شود، و در زمان تراكم كه مخلوط در داخل سيلندر مي‌گردد، و همچنين در زمان تخليه كه گازهاي سوخته از سيلندر به خارج رانده مي‌شود، موتور مقداري انرژي مصرف مي‌كند. بنابراين در زمان قدرت، موتور سرعت مي‌گيرد و در زمان‌هاي ديگر سرعت خود را از دست مي‌دهد. هر چرخ يا فلكه‌اي كه حركت دوراني داشته باشد از آن جمله فلايول هميشه مايل است حالت حركت خود را حفظ كند و يا به عبارت ديگر در مقابل تغيير سرعت از خود مقاومت نشان مي‌دهد (اين تماي به علت اينرسي ماده مي‌باشد). هنگامي كه موتور به افزايش سرعت ميل داشته باشد، چرخ لنگر در مقابل آن مقاومت مي‌كند، موقعي كه موتور به كاهش سرعت ميل داشته باشد باز چرخ لنگر در مقابل آن مقاومت مي‌كند.

با وجود اين در موتورهاي تك سيلندر مقداري افزايش و كاهش سرعت وجود دارد ولي فلايول اين تغييرات سرعت را به حداقل ممكن مي‌رساند. در حقيقت چرخ لنگر مقداري از انرژي موتور را در زمان قدرت و افزايش سرعت در خود ذخيره مي‌كند و بعد در زمان هائي كه موتور قدرت توليد نمي‌كند آن را به موتور پس مي‌دهد. در موتورهاي چند سيلندر نيز چرخ لنگر به همين روش كار مي‌كند و ماگزيمم سرعت را به هم نزديك مي‌كند و سرعت را يكنواخت مي‌نمايد. علاوه بر اين فلايول محلي براي نگهداري قطعات كلاچ فراهم مي‌سازد. ضمناً روي فلايول دنده‌اي وجود دارد كه در موقع استارت زدن يا روشن كردن موتور با دنده محرك استارت درگير مي‌شود.

ارتعاش گير يا ضربه‌گير ميل لنگ

ميل لنگ در معرض نيروهاي مختلف و متناوب قرار دارد و در آن ارتعاشات پيچشي به وجود مي‌آيد. ارتعاشات متناوب، باعث تاب برداشتن ميل لنگ مي‌شود. پيچش ناموزون در جلوي ميل لنگ، در سرعت معيني اتفاق مي‌افتد. مثلاً ممكن است در دورهاي1200، 1600 يا 2400 دور در دقيقه به حداكثر برسد. شدت ارتعاشات در دورهاي بين 1200 تا 1600 دور در دقيقه است و نيز در فاصله بين 1600 تا 2400 ارتعاشات ميل لنگ تشديد مي‌گردد.

ارتعاشات ميل لنگ را به وسيله ارتعاش گير كاهش مي‌دهند. ارتعاش‌گير، از يك فلايول كوچك كه در جلوي ميل لنگ به وسيله بوش‌هاي لاستيكي و صفحه اصطكاكي به پولي يا چرخ دنده اتصال دارد، تشكيل شده است و همراه آن مي‌گردد.

فلايو‌گير، مانند فلايول انتهاي ميل لنگ در موقع ازدياد ناگهاني سرعت، مقداري از انرژي را جذب نموده، در موقع كاهش دور، انرژي خود را به ميل لنگ تحويل مي‌دهد. در جلوي ميل لنگ عواملي مانند دينام، واتر پمپ پروانه و غير قرار دارد كه همواره به نگه داشتن جلوي ميل لنگ تمايل دارند. بنابراين براي حذف تأثيرات عوامل كاهنده سرعت، ارتعاش‌گير كمك چشم‌گيري در كار میل لنگ مي‌كند.

ارتعاش‌گير وزنه‌اي

به پولي ميل لنگ متصل مي‌باشند. در شكل سمت چپ، بوش لاستيكي بزرگي در چند موضع روي فلايول بسته مي‌شود كه از وسط لاستيك آن پيچ‌هاي اتصال دهنده عبور كرده، فلايول ارتعاش‌گير را به پولي متصل مي‌سازد. در شكل وسط، فلايول يك ديسك فولادي بزرگي است كه به وسيله لاستيك‌هاي وسط از ميل لنگ نيرو گرفته يا به آن نيرو وارد مي‌كند.

فلایویل
در شكل فلايول به وسيله يك فلانچ لاستيكي و يك درپوش به سر ميل لنگ بسته مي‌شود. فلانچ لاستيكي مانند بوش‌هاي لاستيكي در دو نوع ديگر عمل مي‌كند.

ارتعاش‌گير هيدروليكي

اين ارتعاش‌ براساس اينرسي فلايولي كه در محفظه‌ي روغن شناور است، كار مي‌كند. پوسته يا محفظه‌ي روغن به دنده سر ميل لنگ بسته شده، همراه آن گردش مي‌كند. فلايول داخل روغن بر اثر نيروي اصطكاك روغن، ديرتر از ميل لنگ، انرژي اخذ مي‌كند. همچنين ديرتر از حركت باز مي‌ايستد و لذا ارتعاش‌ ميل لنگ را خنثي مي‌كند. شكل (15ـ6)

 

ارتعاش گیر

بچه های مکانیک بازدید : 1054 جمعه 27 بهمن 1391 نظرات (0)

میل سوپاپ (میل بادامک ) و زنجیر سفت کن

میل سوپاپ یا میل بادامک و زنجیر سفت کن

میل سوپاپ یا میل بادامک وظیفه  باز و بستن  سوپاپ ها  را بر عهده دارد  بر روی میل سوپاپ دایره

اکسانتیر و دنده اویل پمپ وجود دارد میل سوپاپ نیروی خود را از میل لنگ توسط دنده دریافت مینماید

وظیفه باز و بسته کردن سوپاپ یا فرمان موتور را به عهده دارد در روی میل سوپاپ بادامکهای قرار دارند

که می توانند حرکت دورانی را به حرکت مستقیم الخط  تبدیل نمایند شکل بادمکها در کار موتور تاثیر

بسزایی داشته و مقدار اوانس و ریتارد سوپاپها نیز روی بادامکها محاسبه شده است

 

بادامک در میل سوپاپ

برای هر یک از سوپاپها یک بادامک در نظر گرفته شده است این بادامکها تحت زاویه مخصوص قرار گرفته

و با فاصله معینی از یکدیگر عمل خود را انجام می دهند هر بادامک بایستی دارای مشخصات زیر باشد

1- بعد از کار کردن تغییر شکل ندهد    2- در موقع باز و بسته کردن سوپاپها ایجاد ضربه و لرزش نکند

 

قسمتهای مختلف بادامک

1- دایره مبنا   2- حد باز شدن (شیب ملایم باز شدن )    3- پهلوی باز کردن سوپاپ    4- پهلوی بسته

شدن سوپاپ     5- حد بسته شدن (شیب ملایم بسته شدن ) انتقال نیروی میل لنگ به میل سوپاپ

ممکن است به سه صورت (دنده به دنده – زنجیری – تسمه ای ) انجام شود چون در هر 720 درجه گردش

میل لنگ یک احتراق در هر سیلندر انجام می شود و در هر سیکل یکبار احتیاج به باز و بسته شدن هر

سوپاپ وجود دارد لذا گردش میل سوپاپ نصف گردش میل لنگ می باشد یعنی (در 360 درجه گردش)

و نسبت دنده انها نصف می باشد یعنی دنده میل سوپاپ دو برابر دنده میل لنگ می باشد

 

انواع بادامک در میل سوپاپ

بادامکهای میل سوپاپ از نظر شکل ظاهری به سه نوع تقسیم می شوند که هر یک دارای خواص به

خود هستند

1- بادامک نوک تیز    2- بادامک با نوک صاف و تخت   3- بادامک با نوک نیم گرد

 

وظایف میل سوپاپ (میل بادامک)

1- باز و بسته کردن  سوپاپ ها  توسط  چخش  میل سوپاپ  و قرار  گرفتن  بادامک ها زیر تایپت ها

2- روی میل سوپاپ یک دایره خارج از مرکز (اکسانتریک)وجود دارد که با قرار گرفتن شیطانک پمپ بنزین

وبالا و پایین رفتن ان انتقال بنزین از باک به کاربراتور توسط پمپ بنزین انجام می شود

3- روی میل سوپاپ دندانه ای وجود دارد ک این دنده دلکو و اویل پمپ را بکار می اندازد

 

معایبی که میل سوپاپ می تواند داشته باشد

1- خوردگی بادامکها که این حالت باعث بهم خوردن تایمینگ سوپاپها می شود

2- خوردگی یا شکستگی دنده اویل پمپ و دلکو

3- لقی بیش از حد بین  میل سوپاپ   و  یاتاقانهای  ثابت ان  که  این لقی  باعث کاهش فشار روغن

می شود در ضمن لقی بین 0.05   تا 0.1 میلیمتر می باشد که به وسیله میکرومتر داخلی یا ساعت

اندازه گیری می توان اندازه گیری  کرد و هنگام  جا  زدن بوش باید دقت کرد که سوراخ روغنکاری در

محل خود قرار بگیرد

4- در موتورهایی که  ارتباط حرکتی  میل لنگ و میل سوپاپ  مستقیما  دو چرخ دنده می باشد برای

تشخیص دقیق  میزان  لقی دو دنده  می توان  از میکرومتر  ساعتی  استفاده  نمود  بدین ترتیب که

میکرومتر  ساعتی  را به وسیله پایه اش روی  بلوک  موتور بسته و نوک ساعت را روی یکی از دنده

 های چرخ دنده قرار داده و با حرکت چرخ دنده دیگر میزان لقی دنده ها را از روی  انحراف عقربه میکرو

متر ساعتی معلوم می کنیم

5- برای ازمایش میزان لقی دو دنده می توان با قرار  دادن  تیغه فیلر  در محل تماس دنده ها لقی را

اندازه گرفت میزان لقی مجاز بین دو چرخ دنده 0.07 تا 0.12 میلیمتر  می باشد در صورتیکه این لقی

بیش از حد مجاز باشد باید هر دو چرخ دنده را عوض نمود

6- در موتورهای که از زنجیر استفاده می شود معمولا در اثر کار موتور زنجیره طولش زیاد می شود

و همچنین چرخ دنده ها نیز سائیده می شوند برای ازمایش زنجیر طول ان را با یک زنجیر نو مقایسه

می کنند اگر افزایش  طول  زنجیر کم باشد فقط بایستی زنجیر را عوض نمود سپس دنده های چرخ

دنده ها  را  بازدید نمود در  صورتی  که طول زنجیر خیلی زیاد شده  علاوه  بر زنجیر چرخ  دنده ها نیز

 بایستی عوض شوند به طور کلی لقی غیر مجاز بین ندها و افزایش طول زنجیر سبب  مختل شدن

تایمینگ سوپاپها و تولید صداهای غیر عادی می گردد

7- کنترل و بازرسی لقی طولی میل سوپاپ

فاصله بین محور یاتاقان جلو و پلاک (واشر گلوئی را زمانی که میل سوپاپ روی پایه  مخصوص قرار

داده ایم با فیلر اندازه می گیریم که این فاصله 0.03 تا 0.08 میلیمتر می باشد

8- کنترل خمش میل سوپاپ

دو محور جا یاتاقانی کناره را روی دو پایه جناغی که روی صفحه صافی قرار دارد می گذاریم سپس

ساعت را روی یکی از یاتاقانهای میل سوپاپ قرار داده و میل سوپاپ را بوسیله دست یک دور کامل

میگردانیم و مقدار خمش را به دست می اوریم که نباید از 0.05 میلیمتر تجاوز کند در صورت بیشتر

بودن می توانیم ان را به وسیله پرس در حالت سرد صاف نمائیم

9- کنترل لقی جانبی به وسیله ساعت اندازه گیر

میل سوپاپ را به سمت عقب حرکت می دهیم سپس ساعت را با مقداری پیش فشار روی ان قرار

می دهیم و ساعت را صفر می کنیم با کشیدن دنده به سمت جلو و فشار امدن روی سوزن مقدار

لقی جانبی را نشان می دهند

 

زنجیر سفت کن

زنجیر سفت کن همانطور که از  اسم ان پیداست  برای گرفتن شلی  زنجیر و کم کردن صدای چرخ

دنده ها بوده و همچنین از سائیدگی زنجیر و چرخ دنده ها جلوگیری می کند در نتیجه تایمینگ سوپاپها

بهم نخورده و سوپاپها بموقع باز و بسته شده امروزه در اغلب موتورها زنجیر سفت کن اتوماتیک نصب

شده است این نوع زنجیر سفت کن ها با فشار روغن موتور و فنر کار کی کنند روغن موتور با فشار

وارد سیلندر زنجیر سفت کن  شده و پیستون مربوطه را روی قسمت لاستیکی فشار داده و از شل

شدن زنجیر جلوگیری می کند  هر چند زنجیر های کوتاه نیاز به زنجیر  سفت کن ندارند ولی اغلب از ان

استفاده می شود

اغلب زنجیر سفت کن ها  مجهز به قطعهای جغجغه ای مانندی  هستند که از برگشت قطعه لغزنده

جلوگیری می کند در موتورهایی که  میل بادامک  ان  در سر سیلندر تعبیه شده از زنجیر سفت کن

شامل یک تیغه  فنری  با  پوشش  نئوپرین  در طرف  شل زنجیر و یک صفحه لاستیکی را با پوشش

نئوپرین در طرف دیگر ان می باشد و گاهی از چزخ دنده کمکی قابل تنظیم استفاده می کند.

بچه های مکانیک بازدید : 740 جمعه 27 بهمن 1391 نظرات (0)

 

یاتاقان

کپه یاتاقان

در موتور هر جایی که دو سطح داشته باشد از یاتاقان استفاده می شود این نوع یاتاقانها را یاتاقانهای

استوانه ای می گویند زیرا مانند یک استوانه دور یک شفت گردنده قرار می گیرد چون لنگهای میل لنگ

اجازه نمیدهند که یاتاقانها مانند یک بوش کامل مدور وارد  محورهای ثابت و متحرک میل لنگ شوند لذا

این بوشها به صورت دو قطعه نیم دایره ای ساخته می شود

 

ساختمان یاتاقان

پوسته یاتاقان از فولاد یا برنز ساخته شده است این فولاد استحکام و مقاومت لازم را به یاتاقان می دهد

در روی  این  قسمت یک یا  چند لایه  مواد  یاتاقانی به  ضخامت چند هزارم اینچ قرار گرفته است علت

استفاده از مواد نرم در یاتاقان این است که در صورت تاثیر عوامل خارجی فقط مواد یاتاقانی از بین میرود

و میل لنگ سالم خواهد ماند یاتاقانها دارای شیار  روغن بوده و این شیار روغن را در تمام سطح یاتاقان

پخش می کند

 

مواد یاتاقان

مواد یاتاقان ها الیاژفلزات سرب قلع مس انتیموان یا فلزات سرب قلع جیوه کالیم الومینیوم به نسبتهای

معین ترکیب می شوند یا بابیت که در موتورهای سبک بکار می رود از یک لایه پوسته فولادی و یک لایه

بابیت ساخته شده است در ساختمان بابی از دو فلز اصلی قلع و سرب استفاده شده است در بعضی

از یاتاقانها نسبت به نوع موتور دو یا سه لایه مواد یاتاقانی روی پوسته قرار دارد و در موتورهای سنگین

به چهار لایه در یاتاقان نیز می رسد

 

طرز قرار گرفتن لایه ها بر روی پوسته فولادی به شرح زیر است

الف – مواد یاتاقانی الیاژمس و سرب   

ب : لایه نیکل

ج: لایه الیاژسرب قلع مس

د: مواد گردی قلع

 

خصوصیات یک یاتاقان خوب

ساختن یک یاتاقان ایده ال  ساده نیست  زیرا بالا  بردن یک خاصیت در یاتاقان ایجاد معایب دیگر در ان

می کند در هر حال یاتاقان خوب باید دارای مشخصات زیادی باشد که بطور خلاصه به ان اشاره می شود

 

الف : مقاومت یاتاقان در مقابل فشار حمل بار و ضربات ناشی از احتراق

موتورهای امروزی چون نسبت تراکمی بالا دارند بنابراین نیروی زیادی به یاتاقان وارد می شود که حدود

200کیلوگرم بر سانتی متر مربع می باشد که یاتاقان این بار را باید تحمل کند

 

ب: نرمی و قابلیت فرو بردن ذرات خارجی در یاتاقان

ذرات چرک و گرد غبار و خاک با هوا وارد موتور می شود کاملا توسط صافی هوا گرفته نمی شود و با

رغن حرکت کرده و مقداری از ان همراه روغن از داخل یاتاقان خارج نمی شود ماده یاتاقان طوری باید

باشد که بتواند این مواد خارجی را در خود فرو ببرد تا یاتاقان و شفت از خراش برداشتن و سائیده شدن

مصون بماند پس یاتاقان به اندازه کافی باید نرم باشد تا خاصیت فرو بردن مواد خارجی را در خود داشته

باشد

 

ج: مقاومت در برابر خستگی در یاتاقان

هرگاه فلزی در معرض تنش های مداوم قرار بگیرد انعطاف پیدا کرده و خم می گردد سپس این فلز سخت

شده ترک برداشته و یا شکسته می شود لذا یاتاقانها که در معرض بارهای زیاد هستند بایستی بتواند در

مقابل این بارهای متغیر ایستادگی کنند بدون این که به حد خستگی برسد و تمایل به ترک یا شکستگی

از خود نشان ندهند 

 

د : مقاومت در برابر خوردگی در یاتاقان

در اثر احتراق مواد خورنده تولید می شود که برای فلزات مفید نیست همچنین بنزین های بدون سرب

خاصیت شیمیایی روغن را تغییر داده و حالت خورندگی یاتاقانها را افزایش می دهد ماده یاتاقان باید در

مقابل این خورندگی مقاومت داشته باشد در قدیم از یاتاقانهای مسی و سربی استفاده می شد ولی

امروزه از یاتاقانهای الومینیومی  سربی استفاده می شود  این نوع یاتاقان در مقابل خورندگی بهتر

مقاومت می کند

 

ه : مقاومت در مقابل سائدیگی در یاتاقان

ماده یاتاقان باید به اندازه کافی سخت و محکم باشد تا به سرعت سائیده نشود از طرف دیگر باید به

اندازه کافی نرم باشد تا توانایی فرو بردن و انطباق داشته باشد

 

ز: قابلیت هدایت حرارتی

کلیه یاتاقانها در اثر گردش میل لنگ ایجاد حرارت می کنند لذا مواد یاتاقانی بایستی قابلیت هدایت

حرارتی بیشتری داشته باشد تا بتواند حرارت را انتقال دهند

 

یاتاقان

روغن کاری یاتاقان ها

از مدار اصلی روغن مسیری به کپه های ثابت روی بلوک راه دارد که روغن از ان مسیر وارد سوراخ

مجرای روغن میل لنگ شده و سطح کلیه یاتاقانها را روغن کاری می نماید این  روغن بصورت قشر

نازکی (فیلم روغن) به سطوح متحرک محور میل لنگ و سطوح ثابت یاتاقان می چسبد و در اثر فشار

مدار روغن میل لنگ در بستری از روغن بصورت شناور می چرخد در ابتدای کار میل لنگ در اثر نیروی

 وزن خود در روی کف یاتاقان قرار دارد به محض روشن شدن موتور روغن در اثر چسبندگی به سطوح تماس

مانند گوه ای میل لنگ را بلند کرده و در وسط یاتاقان نگه می دارد اصطکاکی که به این صورت ایجاد

می شود اصطکاک غلظتی روغن بوده و اگر به علت تشکیل نشدن قشر روغن فلز میل لنگ با فلز یاتاقان

تماس بگیرد نیروی اصطکاک بالا رفته و گرمای یاتاقان بحدی می رسد که بابیت را ذوب کرده و صدای

ناشی از یاتاقان سوزی بگوش می رسد بین پوسته یاتاقانها و میل لنگ خلاصی مجازی وجود دارد که

اصطلاحا این خلاصی را فاصله روغن نیز می گویند هر چه این خلاصی بیشتر باشد روغن به سرعت از

یاتاقان ها خارج می شود اندازه این خلاصی در موتورهای مختلف متفاوت بوده و حدودا یک هزارم اینچ

یا سه صدم میلیمتر بیشتر معمول است در صورتی که ان خلاصی دو برابر گردد مقدار ریزش روغن 5

برابر می شود  افزایش خلاصی روغن سبب نرسیدن روغن به یاتاقانها مجاور می گردد زیرا پمپ روغن

فقط مقدار معینی از روغن را می تواند جابجا کند در نتیجه بیشتر روغنها از یاتاقان های نزدیک مجرای

روغن بیرون ریخته و به یاتاقانهای دورتر کمتر روغن  می رسد کاهش خلاصی روغن در یاتاقانها سبب

می شود که عمل روغنکاری صحیح انجام نگرفته و سائیدگی انها سریع تر شود همچنین مقدار روغن که

به دیواره سیلندر پاشیده می شود کافی نبوده و روغنکاری دیواره سیلندر  و رینگ ها بخوبی انجام

نمیشود در ضمن زمانی که لقی یاتاقانها زیاد باشد بجز اینکه روغن ریزی موتور زیاد می شود و فشار

روغن پایین می اید و افزایش روغن به دیواره سیلندر زیاد می شود که باعث روغن سوزی موتورمی گردد

 

یاتاقانهای پین دار و یاتاقانهای خاردار

در بعضی از موتورها یاتاقانهای اصلی بوسیله سوراخی که دارند در پین جا یاتاقانی قرار می گیرند که

از چرخش یاتاقان جلوگیری شود در ضمن در بیشتر موتورها از یاتاقانهای استفاده می شود که یک طرف

پوسته یاتاقان بصورت خاردار ساخته می شود که در شیار جا یاتاقان قرار گرفته و حرکت چرخشی ان را

ضامن می کند

 

پیش بینی لبه اضافی یاتاقان

پوسته یاتاقانها باید به خوبی با جا یاتاقانی تماس بگیرد تا اولا بطور کامل گرمای ایجاد شده را از طریق

جا یاتاقانی انتقال دهد و نسوزد ثانیا با داشتن تکیه گاه مناسب می تواند نیروی وارده را به جایاتاقانی

متصل نموده و خراب نشود برای اطمینان از تکیه نمودن کامل پوسته یاتاقان بهتر است لبه های نیمه

یاتاقانی پایین را به اندازه دو صدم تا هفت صدم میلیمتر از لبه های کپه یاتاقانی بلندتر تنظیم کنند با این

عمل در صورت سفت کردن یاتاقان نیروی اولیه به پوسته یاتاقان وارد شده و ان را بخوبی به تکیه گاهش

می فشارد یک چنین یاتاقانی نیروی وارد به محور را بطور یکنواخت در جهت شعاعی به جا یاتاقانی

انتقال می دهد

 

عیب های یاتاقانها

1- خراشهای بوجود امده توسط ذرات خارجی

الف: خراشهای بوجود امده در امتداد سطح داخلی یاتاقان

ب: پدید امدن حفره های بر روی سطح داخلی یاتاقان

علل پیدایش 

الف : الودگی روغن

ب: تمیز نکردن دقیق قطعات موتور هنگام مونتاژ ان

 

2- وارد شدن بار به لبه های یاتاقان

شکل ظاهری : ایجاد شدن خراشهای شدید در یک طرف هر دو نیم یاتاقان

علل پیدایش

الف: مخروطی بودن محل تماس میل لنگ با یاتاقان متحرک

ب: مخروطی بودن نشیمن یاتاقان ثابت

ج: بزرگتر از حد معمول بودن شعاع گردی میل لنگ

د: خوب موازی نبودن صحیح میل لنگ

ه : کج بودن شاتون

 

3- بوجود امدن خراشهای شدید در قسمت میانی و همچنین امکان ترک برداشتن لایه روئی یاتاقان

 کنده و جمع شدن لایه روئی یاتاقان

شکل ظاهری

الف: سائیدگی شدید موضعی در قسمت میانی یاتاقان بطوریکه وارد شدن بار بیش از حد مجاز بر

 یاتاقان به ترک برداشتن و ایجاد شکاف در لایه روئی یاتاقان می انجامد

ب: جابجایی موضعی فلز سطح روئی یاتاقان

علل پیدایش

الف : محدب بودن محل تماس میل لنگ با یاتاقان متحرک

ب: محدب بودن نشیمن یاتاقان ثابت

 

4- ایجاد سائیدگی هایی به شکل نوار نازک در قسمت انتهایی یاتاقان

شکل ظاهری

سائیدگی شدید به صورت اثری نازک در قسمت انتهایی یاتاقان بدین ترتیب که بین لبه یاتاقان و اثر

 بوجود امده به علت سائیدگی اثری دیگر از  منتبح از حرکت  میل لنگ  مشاهده  نمی شود اثرهای

 بوجود امده به علت سائیدگی می توانند در یک انتهای یاتاقان ظاهر شوند

علل پیدایش میل لنگهای که ناصحیح صیقل داده شده اند

 

5- جابجا شدن کپه شاتون

شکل ظاهری : سائیدگی لایه روی یاتاقان بر اثر ایجاد اصطکاک شدید در اطراف سطح های بر روی

 هم افتاده دو نیم یاتاقان بطور قرینه

علل پیدایش

جابجا شدن کپه شاتون بر اثر اشتباه مونتاژ کردن ان

 

6- زنگ زدگی

شکل ظاهری

خورده شدن و از بین رفتن سطح روئی یاتاقان بصورت سوراخهای پراکنده و یا بطور کامل

علل پیدایش

الف : بکار بردن مواد اضافی در روغن که هماهنگی لازم را با نحوه عمل روغن ندارد

ب: الوده شدن روغن توسط ورود احتمالی مواد قلیایی از طریق واشرها

ج: بموقع عوض نکردن روغن

 

7- اشتباه قرار دادن یاتاقان در محل نشستن ان در رابطه با سوراخها تامین کننده روغن

شکل ظاهری

سائیده شدن و خوردگی شدید سطح داخلی یاتاقان بعلت نرسیدن روغن لازمه به ان

علل پیدایش

توجه نکردن و عدم دقت کافی در هنگام قرار دادن و مونتاژ کردن یاتاقانها

 

8- اشتباه مونتاژ کردن در رابطه با میله کوتاه (خار) نگهدارنده یاتاقان

شکل ظاهری

به علت بلندتر از حد معمول بود میله کوتاه (خار) نگهدارنده در محل جا افتادن این خار در پشت

یاتاقان همین امر موجب اصطکاک زیاد و سائیدگی موضعی در همین قسمت سطح روئی یاتاقان

می گردد

علل پیدایش

اشتباه مونتاژکردن و بلندتر از حد لازم بودن (خار)نگاه دارنده یاتاقان

  

یاتاقان موتور

بچه های مکانیک بازدید : 1028 چهارشنبه 25 بهمن 1391 نظرات (0)

شاتون ها

شاتون

شاتون میله ای فولادی و سخت که به طریقه ریخته گری یا اهنگری ساخته می شود مقطع شاتون را

برای مقاومت بیشتر به صورت  تیر اهن Iمی سازند  شاتون ارتباط پیستون را با میل لنگ برقرار نموده

و ضربه حاصله از نیروی سوخت که بر روی پیستون فشار می اورد را بر روی میل لنگ منتقل و لنگ را

پایین برده و نهایتا حرکت رفت و برگشتی پیستون بوسیله شاتون به میل لنگ وارد می شود که در

میل لنگ به حرکت دورانی تبدیل می گردد

در دورهای زیاد فشار نیروهای کششی زیادی به شاتون وارد می شود بنابراین بایستی جنس ان

بسیار مرغوب و حتی الا مکان سبک باشد قسمت بزرگ شاتون توسط  کپه یاتاقان  به وسیله پیچ و

مهره روی یک لنگ میل لنگ  سوار  می شود و  یک  یاتاقان دو نیمه ای بین شاتون و میل لنگ قرار

میگیرد و انتهای کوچک شاتون توسط گژن پین به پیستون متصل  می گردد داخل محل قرار گرفتن

گژن پین از یک بوش جهت کم کردن اصطکاک استفاده می شود روغنکاری به وسیله شاتون انجام

می شود و به دو صورت می باشد

1-      در بعضی موتورها یک مجرای سرتاسری در طول شاتون بوده و روغن  را از سوراخ یاتاقان

گرفته و به بوش گژنپین می رساند

       2- بعضی دیگر از موتورها سوراخ روغن پاش در یک سمت شاتون قرار گرفته و سبب روغن کاری

دیواره سیلندر می گردد هنگام گردش میل لنگ موقعی که سوراخ میل لنگ و شاتون در یک امتداد

قرار می گیرند روغن از مجرای میل لنگ و شاتون عبور کرده و از سوراخ بغل شاتون به دیوار سیلندر

پاشیده می شود روغن دیواره سیلندر نیز به وسیله  رینگ روغنی وارد شیار و سوراخهای پیستون

شده و روی بوش گژنپین می ریزد و انرا روغنکاری می کند

یاتاقانهای متحرک شاتون به دو دسته تقسیم می شوند

 

1- نوع یاتاقانهای یک پارچه :

در این نوع قسمت بزرگ شاتون به صورت یکپارچه  ساخته شده و در داخل ان معمولا غلطک های

کوچک و یا بلبرینگ قرار می گیرد این نوع یاتاقان  بیشتر در موتورهای دو زمانه بنزینی و در بعضی

از موتورهای کوچک استفاده می شود

 

2- نوع یاتاقانهای دو تکه :

در این نوع قسمت بزرگ شاتون به دو قطعه  نیم دایره  شکل تقسیم شده که یکی از نیم دایره ها

(کپه پایین را تشکیل می دهد ) پس از گذاشتن  هر دو  قسمت در روی گلوئی متحرک میل لنگ به

وسیله پیچ ومهره به یکدیگر متصل می شوند

 

شاتون موتورهای خورجینی (v) شكل

طرز قرار گرفتن شاتون در روی موتورهای خورجینی بر سه نوع می باشد

 

1- نوع شاتون موازی :

در این نوع موتور دو عدد شاتون مربوط به دو  پیستون در  کنار  یکدیگر و در روی یک گلوئی میل لنگ

بسته می شوند ساختمان این نوع شا تون ها مثل شاتون های معمولی است

 

2- نوع شاتون ضربدری (متقاطع)

در این نوع شاتون نیز مثل قبلی یاتاقانهای متحرک هر دو شاتون مربوط به دو سیلندر مقابل به هم

در روی یک گلوئی میل لنگ قرار میگیرد با این تفاوت که  (کفه یکی از شاتون ها به شکل دو شاخه

بوده و انتهای شاتون دیگر باریک می باشد ) در نتیجه انتهای یکی از شاتونها داخل شاتون دیگر شده

و سپس هر دو روی میل لنگ بسته می شوند

 

3- نوع شاتون لولایی :

در این نوع یکی از شاتونها در روی گلوئی میل لنگ وصل می شود و شاتون دیگر که سر ان دارای یک

سوراخ می باشد و به وسیله یک پین به قسمت بالای کفه متحرک پشت زین کفه شاتون اولی وصل

می گردد

 

4- عیب های شاتون ها :

معمولا به ندرت اتفاق می افتد که شاتون احتیاج به تعویض پیدا کند مگر اینکه صدمه شدیدی در اثر

تصادف به شاتون وارد شود و یا در اثر کار مداوم موتور شاتون  کج شده و یا تاب بر میدارد و به طور

کلی محور گژنپین کاملا موازی محور لنگ متحرک میل لنگ و برای اطمینان هنگام جمع کردن  موتور

باید شاتون نو یا کار کرده را قبل از بستن روی موتور از نظر خمیدگی (تاب داشتن) پیچیدگی امتحان

و ازمایش نمود و به خاطر این که اگر شاتون خم شده باشد محور گژنپین با محور لنگ میل لنگ موازی

نبوده و باعث اعمال نیروی جانبی  نامناسب  به میل لنگ و یاتاقانهای متحرک و همچنین به گژن پین

وارد می شود

 

تذکر مهم برای شاتون :

1-          بلندی طول شاتون با قدرت موتور نسبت مستقیم دارد یعنی  اگر طول شاتون بلند باشد

موتور دارای  قدرت  زیاد  است ولی تعداد دور ان  در دقیقه  کمتر است از موتور با شاتون کوتا ه تر 

اختلاف وزن شاتون ها در موقع تعویض در موتورهای سواری از  پنج  گرم و در موتورهای سنگین از

ده گرم بیشتر نباشد در مواقع ضروری می توان به مقدار  کم از پای شاتون تراشیده و وزن شاتونها

را یکسان  نمود  در هنگام جا  زدن بوش کوچک  شاتون  (بوش گژن پین)  باید به مجرای روغن بوش

دقت نماید که اشتباه قرار نگیرد به خاطر این که مسیر روغن شاتون  را کور  میکند البته این موضوع

برای شاتون های که در مسیر روغن گژن پین از وسط شاتون می گذرد

 

2-      تذکر برای قرار دادن خار نگه دارنده گژن پین در شاتون

باید توجه داشته باشیم هنگام جا زدن خار گژنپین حتما دهانه خار به سمت بالای پیستون قرار بگیرد

و در غیر این صورت این امکان وجود دارد که خار از محل خود خارج شود به این دلیل در هنگام احتراق

ضربه وارده بر روی پیستون  اگر  دهانه به سمت  پایین  باشد باعث جمع شدن فنر و خارج شدن ان

میگردد ولی اگر به سمت بالا باشد در اثر ضربه دهانه بازتر شده و کاملا در محل خود قرار می گیرد

 

گژن پین (انگشتی پیستون)

 

گژن پین میله ای است استوانه ای که جنس ان از فولاد می باشد و قسمت خارجی ان نرم است و

سطح داخلی ان سخت است تا گژنپین در مقابل ضربات حاصل از  احتراق مقاوم باشد برای مقاومت

بیشتر ان را ابکاری و صیقل می دهند

گژن پین محور اتصال دهنده شاتون به پیستون است اتصال و درگیری گژن پین با پیستون و شاتون به

پنج صورت انجام م گیرد

1- گزن پین در داخل بوش برنزی ومحل نشیمن خودروی پیستون کاملا ازاد بوده ومی تواند به راحتی

حرکت نماید این حالت کاملا ازاد نامیده می شود وپیستون در این نوع  معمولا الومینیومی  است و در

این وضعیت خارهای نگهدارنده در شیارهای مخصوص داخل سوراخهای پیستون قرار گرفته و ازحرکت

گژن پین جلوگیری می کند

 

2- سوراخ سر کوچک شاتون چاکدار بوده و به وسیله پیچ قفلی بسته می شود هم چنین در دوسمت

پیستون بوش های برنزی در داخل نشیمن گژنپین قرار داده شده و پیستون از نوع چدنی است

 

3- گژنپین به وسیله پیچ قفلی مانند حالت قبل بسته شده  فقط در سوراخهای پیستون بوش برنزی

وجود ندارد همچنین پیستون از نوع الومینیومی است

 

4- گژن پین با فشار دستگاه پرس به سر کوچک  شاتون  جا زده  شده و سر کوچک شاتون و سوراخ

های پیستون بوش ندارد قطر گژن پین 0.3میلیمتر بزرکتر از قطر سر کوچک شاتون است تا گژن پین

کاملا در محل سفت بوده و نتواند لق شود

در این حالت بهتر است که قبل از زمان درگیری سر کوچک شاتون را بوسیله کوره های مخصوص یا

اجاق برقی گرم کرده تا حالت انبساطی پیدا کند سپس خیلی سریع درگیری را انجام داده تا وقتی که

شاتون سرد شود و به خالت اولیه خود برگردد کاملا گژن پین را سفت می کند

 

5- گژن پین به وسیله پیچ قفلی به پیستون بسته شده و سر کوچک شاتون دارای بوش برنزی بوده

و پیستون از نوع چدنی است

گژنپين

تعداد صفحات : 15

درباره ما
به سایت مکانیک لامرد خوش آمدید.
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • نظرسنجی
    به نظر شما کدام یک از اتوموبیل های زیر جزء بهترین ها هستند؟
    آمار سایت
  • کل مطالب : 144
  • کل نظرات : 9
  • افراد آنلاین : 1
  • تعداد اعضا : 122
  • آی پی امروز : 26
  • آی پی دیروز : 29
  • بازدید امروز : 96
  • باردید دیروز : 34
  • گوگل امروز : 11
  • گوگل دیروز : 9
  • بازدید هفته : 269
  • بازدید ماه : 758
  • بازدید سال : 6,165
  • بازدید کلی : 456,860
  • کدهای اختصاصی